A Note on The Enumeration of Euclidean Self-Dual Skew-Cyclic Codes over Finite Fields

نویسندگان

  • Irwansyah
  • Intan Muchtadi-Alamsyah
  • Ahmad Muchlis
  • Aleams Barra
  • Djoko Suprijanto
چکیده

In this paper, we give the enumeration formulas for Euclidean selfdual skew-cyclic codes over finite fields when (n, |θ|) = 1 and for some cases when (n, |θ|) > 1, where n is the length of the code and |θ| is the order of automorphism θ.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Skew constacyclic codes over finite chain rings

Skew polynomial rings over finite fields ([7] and [10]) and over Galois rings ([8]) have been used to study codes. In this paper, we extend this concept to finite chain rings. Properties of skew constacyclic codes generated by monic right divisors of x − λ, where λ is a unit element, are exhibited. When λ = 1, the generators of Euclidean and Hermitian dual codes of such codes are determined tog...

متن کامل

Skew constacyclic codes over Galois rings

We generalize the construction of linear codes via skew polynomial rings by using Galois rings instead of finite fields as coefficients. The resulting non commutative rings are no longer left and right Euclidean. Codes that are principal ideals in quotient rings of skew polynomial rings by a two sided ideals are studied. As an application, skew constacyclic self-dual codes over GR(4) are constr...

متن کامل

Enumeration of Self-Dual Cyclic Codes of some Specific Lengths over Finite Fields

Self-dual cyclic codes form an important class of linear codes. It has been shown that there exists a self-dual cyclic code of length n over a finite field if and only if n and the field characteristic are even. The enumeration of such codes has been given under both the Euclidean and Hermitian products. However, in each case, the formula for selfdual cyclic codes of length n over a finite fiel...

متن کامل

On Skew Cyclic Codes over a Finite Ring

In this paper, we classify the skew cyclic codes over Fp + vF_p + v^2F_p, where p is a prime number and v^3 = v. Each skew cyclic code is a F_p+vF_p+v^2F_p-submodule of the (F_p+vF_p+v^2F_p)[x;alpha], where v^3 = v and alpha(v) = -v. Also, we give an explicit forms for the generator of these codes. Moreover, an algorithm of encoding and decoding for these codes is presented.

متن کامل

A Note on the Existence of Self-Dual Skew Codes over Finite Fields

Conditions on the existence of self-dual θ-codes defined over a finite field IFq are studied for θ automorphism of IFq. When q ≡ 1 (mod 4) it is proven that there always exists a self-dual θ-code in any dimension and that self-dual θ-codes of a given dimension are either all θ-cyclic or all θ-negacyclic. When q ≡ 3 (mod 4), there does not exist a selfdual θ-cyclic code and a necessary and suffi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1705.06049  شماره 

صفحات  -

تاریخ انتشار 2017